NEUTRINO CROSS SECTIONS

Sam Zeller
Fermilab

PANIC 2011 July 26, 2011

- this topic has become quite interesting lately
- revisiting v scattering physics again for 1^{st} time in decades
- new data is revealing some surprises

华

Neutrino Physics

• looking forward, there are some big ?'s we will be trying to answer ...

- what are the masses of neutrinos?
- are neutrinos their own anti-particles?
- is θ_{23} maximal? is θ_{13} non-zero?
- what is their mass ordering?
- is CP violated in the v sector?

 v_3 v_2 v_1 Δm_{ATM}^2

• extensive international effort aimed at addressing these ?'s will place even greater demands on our knowledge of underlying ν interactions

(this knowledge will quickly become inadequate as aim for next level in precision & search for smaller and smaller effects)

Neutrino Cross Sections

 pursuit of v oscillations has unfortunately forced us into a rather complex region of v interaction physics

(100's MeV to few-GeV)

 lots of rich physics here; is where are also building our future v oscillation experiments

(broad band beams contain contributions from multiple reaction mechanisms)

Why Is this Complicated?

resonance production

$$\nu_{\mu} N \rightarrow \Delta$$
 $L N'\pi$

deep inelastic scattering

$$\nu_{\mu} \: N \to \mu^{\text{-}} \: X$$

need to extrapolate into low energy region

Historical Measurements

- most of info in this region comes
 from data that is >30 yrs old
 - low statistics
 - mostly D_2 , H_2 bubble chambers

- one crucial difference: modern experiments use heavier nuclei
- has necessitated a dedicated campaign of new measurements

Modern Measurements

new experiments making improved σ_{v} measurements cover a broad E range

advantages of new data:

- nuclear targets (crucial!)
- higher statistics
- intense, well-known ν beams
- studying ν and $\overline{\nu}$'s (will be important for \mathcal{SP})

K2K ND, MicroBooNE, MiniBooNE, SciBooNE, T2K ND

MINOS, NOMAD, NOVA ND

Neutrino Interactions

- let's start on the left and work our way up in energy ...
 - QE
 - π production
 - CC inclusive
- use this plot as our guide as we survey the landscape
- what have we learned in exploring this region again

30+ years later? ... along the way, will also point out next steps ...

‡

Quasi-Elastic Scattering

Why important?

- important for v oscillation experiments
 - typically gives largest contribution to
 signal samples in many osc exps (atm+accel)
 - one of the most basic v interactions

$$v_{\mu} \stackrel{}{\mathsf{n}} \rightarrow \mu^- \stackrel{}{\mathsf{p}}$$
 (single knock-out nucleon)

examples:

$$\nu_{\mu} \rightarrow \nu_{e} \ (\nu_{e} \ appearance)$$

$$\nu_{\mu} \rightarrow \nu_{\chi} \ (\nu_{\mu} \ disappearance)$$

华

Historical Context

- conventional wisdom is that
 QE σ is well-known
 - it's a simple 2-body process
- can consistently describe all the experimental data
 - most is on D_2
 - assume scattering takes place on individual nucleons
 - Fermi Gas model
 - $M_A = 1.0 \text{ GeV}$
- this description has been quite successful
 - can predict size & shape of σ

with these ingredients, it looked straightforward to describe ν QE scattering on nuclei

QE Cross Section on Carbon

S. Zeller, PANIC, July 26, 2011

QE Cross Section on Carbon

- MiniBooNE data is well above "standard" QE prediction (increasing M_A can reproduce σ)
- NOMAD data consistent with

"standard" QE prediction (with
$$M_{\Delta}$$
=1.03 GeV)

QE Cross Section on Carbon

- results of low & high E experiments appear to be inconsistent; cannot be described with a single prediction (we'll come back to this)
- good news: new data will be weighing in on this soon (will show some preliminary QE results from MINERVA)

QE Cross Section at Low Energy

- MiniBooNE data has provided the 1st measurement of ν QE scattering on a nuclear target heavier than D₂ at low E_{ν} (E_{ν}<2 GeV)
 - naturally, these results have garnered a lot of attention lately, largely because they were unexpected (effects first seen in K2K ND)
- more sophisticated models also underpredict the low E σ (fall short by 30-40%!)
- remedy has been to increase M_A in these predictions

(L. Alvarez-Ruso, NuFact11)

- another possible explanation has recently emerged
- while traditional nuclear effects <u>decrease</u> the σ , there are processes that can <u>increase</u> the total yield ...

Martini et al., PRC **80**, 065001 (2009)

- extra contributions coming from <u>nucleon correlations</u> in the nucleus
 - (all prior calculations assume nucleons are independent particles)
- can predict MiniBooNE data without having to increase M_{Δ} (here, $M_{A}=1.0$ GeV)

- another possible explanation has recently emerged
- while traditional nuclear effects <u>decrease</u> the σ , there are processes that can <u>increase</u> the total yield ...

• idea is not new

- Dekker et al., PLB **266**, 249 (1991)
- Singh, Oset, NP **A542**, 587 (1992)
- Gil et al., NP **A627**, 543 (1997)
- J. Marteau, NPPS 112, 203 (2002)
- Nieves et al., PRC **70**, 055503 (2004)

Martini et al., PRC 80, 065001 (2009) ←

- another possible explanation has recently emerged
- while traditional nuclear effects <u>decrease</u> the σ , there are processes that can <u>increase</u> the total yield ...

Martini et al., PRC **80**, 065001 (2009)

17

- another possible explanation has recently emerged
- while traditional nuclear effects <u>decrease</u> the σ , there are processes that can <u>increase</u> the total yield ...

Martini et al., PRC **80**, 065001 (2009)

add'l nuclear processes contribute $\sim 40\%$ more σ at these ν energies and produce a multi-nucleon final state ($\mu+p+p$)

together account for MB

these two final states are indistinguishable in MB and in Cerenkov detectors in general

- another possible explanation has recently emerged
- while traditional nuclear effects <u>decrease</u> the σ , there are processes that can <u>increase</u> the total yield ...

Martini et al., PRC **80**, 065001 (2009)

 could this explain the difference between MiniBooNE & NOMAD?

jury is still out on this

need to be clear
what we mean by "QE"
when scattering off
nuclear targets!

华

Electron QE Scattering

• supporting evidence from electron QE scattering

(J. Carlson, G. Garvey)

Carlson et al., PRC 65, 024002 (2002)

- **longitudinal** part of σ_{QE} can be described in terms of scattering off independent nucleons
- in contrast, a significant increase observed in **transverse** component (can be explained by SRC and 2-body currents)
- has been known for over a decade, seemingly forgotten
- implies that there should also be a corresponding transverse enhancement in v QE scattering!

恭

New Approach

- calculation of additional nuclear dynamics (nucleon correlations & 2-body currents) in the treatment of ν QE scattering has been a recent focus in last year:
 - Nieves et al., arXiv:1106.5374 [hep-ph]
 - Bodek et al., arXiv:1106.0340 [hep-ph]
 - Amaro, et al., arXiv:1104.5446 [nucl-th]
 - Antonov, et al., arXiv:1104.0125
 - Benhar, et al., arXiv:1103.0987 [nucl-th]
 - Meucci, et al., Phys. Rev. C83, 064614 (2011)
 - Ankowski, et al., Phys. Rev. C83, 054616 (2011)
 - Nieves, et al., Phys. Rev. **C83**, 045501 (2011)
 - Amaro, et al., arXiv:1012.4265 [hep-ex]
 - Alvarez-Ruso, arXiv:1012.3871[nucl-th]
 - Benhar, arXiv:1012.2032 [nucl-th]
 - Martinez, et al., Phys. Lett **B697**, 477 (2011)
 - Amaro, et al., Phys. Lett **B696**, 151 (2011)
 - Martini, et al., Phys. Rev C81, 045502 (2010)

transverse response from e⁻
A. Bodek, parallel 2E)

Wish

Moving Forward

- 146,000 v_{μ} "QE" events (currently world's largest sample)
- 1st double differential σ 's (from MiniBooNE)

$${\rm d}^2\sigma/{\rm d}T_\mu {\rm d}\theta_\mu$$

 historically, never had enough statistics to do this

Aguilar-Arevalo et al., PRD 81, 092005 (2010)

- provides much richer info than $\sigma(E_{\nu})$ & less model-dependent
- posing a formidable challenge for new nuclear model calcs (need more data like this ... not only μ but also measurements of p kinematics!)

Direct Evidence

• e⁻ scattering experiments have already provided evidence for SRC big splash in Science magazine: R. Subedi et al., Science **320**, 1476 (2008)

• direct measurement of multi-nucleon final states in a ν detector with low thresholds could play an important role in quantifying scattering from such correlated nucleon states (NOMAD, Veltri et al., NP **B609**, 255 (2001))

QE Scattering in a Liquid Argon TPC

23

J. Spitz, arXiv:1009.2515 [hep-ex]

ArgoNeuT = 175L LAr TPC
 in NuMl beam (2009-2010)

- V interactions in exquisite detail (ex., can detect protons down to 50 MeV)
- plus data from ICARUS, μBooNE
- need to disentangle SRC from FSI

华

$\overline{\mathbf{v}}$ QE at MINER \mathbf{v} A!

• will pursue a broad range of σ_v 's with multiple beam E's and nuclear targets (much of focus up to now has been on O, C)

starting data-taking with full detector

in Mar 2010

(R. Ransome, parallel 2E)

- less sensitive to details of the event selection (n in f.s.)
- less ambiguity as to whether or not selection includes extra effects of nucleon-nucleon correlations (produces an n+n in f.s.)

nuclear targets (He, C, Fe, Pb, H2O, CH)

华

$\overline{\nu}$ QE at MINER ν A

(K, McFarland, Nulnt11)

- $\overline{v_{\mu}}$ QE interactions in CH across a large energy range (note: MiniBooNE v_{μ} QE: 0.4-2 GeV, NOMAD: 4.5-60 GeV)
- observe an event **deficit**; not fully understood (relative to "standard" QE MC, GENIE, **M**_A=0.99 GeV, untuned NuMI flux)

determining

v flux using

special run data,

add'l stats, v QE,

different selections

This is Important

- something as simple as QE scattering is not so simple
 - nuclear effects can significantly increase the cross section
 - idea that could be missing $\sim\!40\%$ of σ is a big deal!
- good news: expect larger event yields
- bad news: need to understand/simulate the underlying physics
- effects will be different for v vs. \overline{v} (at worse, could produce a spurious \cancel{CP} effect)
- can impact E_{v} reconstruction

Amaro et al., PRC 82, 044601 (2010)

This is Important

- something as simple as QE scattering is not so simple
 - nuclear effects can significantly increase
 - idea that could be missing ~40°
- good news: expect larger
- bad news: need to understand the underlying physics
- effects will be different for v vs.
 (at worse, could produce a spurious P effect)
- can impact E_{v} reconstruction

in the past year,
have gone from a
have gone from a
general complacency
the QE Ov
that we know the QE ov
that we know the of rich nuclear effects
host of rich nuclear effects

ω [MeV]
σ1., PRC **82**, 044601 (2010)

Pion Production (Δ ,N* \rightarrow N π)

• NC π^0 production (background for $v_{\rm e}$ appearance)

• CC π^+ , π^0 production (background for ν_μ disappearance)

• important for different reasons → backgrounds

Final State Effects

• new appreciation for nuclear effects in this region as well

"final state interactions (FSI)"

- once a hadron is produced, is has to make it out of the target nucleus
- nucleon rescattering
- π absorption & charge exchange

- have to worry about these effects
- for v, is a subject that needs more attention
 (U. Mosel, parallel 5F, Thursday)

Final State Effects

- distortions are large
- important for predicting π^0 bkgs in $\nu_{\rm e}$ searches

(T. Leitner)

and predictions of their effects can vary

http://regie2.phys.uregina.ca/neutrino/

- new FSI model work
- GENIE (S. Dytman), GiBUU (U. Mosel), NEUT (P. dePerio)
- ullet understanding π kinems is important
 - has never been carefully studied in v scattering

Pion Production in MiniBooNE

• extensive program to measure kinematics (report what is directly observed to reduce model dep)

(E. Zimmerman, parallel 1E)

- Phys. Rev. **D81**, 013005 (2010)
- Phys. Rev. **D83**, 052009 (2011)
- Phys. Rev. **D83**, 052007 (2011)

having this type of info is new!

measurement	$NC \pi^0$	$CC \pi^0$	$CC \pi^+$
$\sigma(E_{\scriptscriptstyle \mathrm{V}})$		Χ	X
$d\sigma/dQ^2$		X	X
$d\sigma/dp_\pi$	X	X	X
$d\sigma/dcos heta_\pi$	X	Χ	X
$d\sigma/dT_{\mathfrak{u}}$		Χ	X
$d\sigma/dcos heta_{\mathfrak{u}}$		X	X
${\sf d}^2\sigma/{\sf d}{\sf T}_\mu{\sf d}{\sf cos}\theta_\mu$			X
$d^2\sigma/dT_\pi^Ldcos\theta_\pi^L$			X

- 3 channels,
 16 different σ
 measurements!
- all of this data available online

http://www-boone.fnal.gov/
for_physicists/data_release/

Example: CC π^0

$\frac{\partial \sigma}{\partial \cos \theta_{\mu}} (v_{\mu} N \rightarrow \mu^{-} \pi^{0} N^{2}) [cm^{2} / CH_{2}]$ Systematic error NUANCE 83, 052009 (2011) 0-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 $\cos \theta$ B. Nelon, Ph.D. thesis, PRD

1st ever differential cross sections for this process on a nuclear target (CH₂)

$$\sigma(E_{\nu})$$
, $d\sigma/dQ^{2}$
 $d\sigma/dT_{\mu}$, $d\sigma/d\theta_{\mu}$
 $d\sigma/dp_{\pi}$, $d\sigma/d\theta_{\pi}$

ullet most comprehensive study of CC π^0 to date

华

FSI Models

data in heavy use by model builders

- need measurements on other targets
- and at higher energies
 - ArgoNeuT, ICARUS, μBooNE
 - MINERVA

• could use help from nuclear physicists!

list

Putting this All Together

new appreciation for the role that inclusive measurements can play especially as we try to sift through these complex nuclear effects

‡

CC Inclusive Cross Section

 advantage is that measures everything all at once:

- + QE
- + nucleon-nucleon correlations
- + π production
- + π absorption
- + DIS ...

• can do so with very high purity samples (events with a µ)

clear need for improved measurements $E_{\rm v} \lesssim 50~{\rm GeV}$

华

CC Inclusive Cross Section

- $\nu_{\mu} N \rightarrow \mu^{-} X$
- new data in the past couple years
- have greatly increased precision in this energy region

- **NOMAD**: (v ¹²C) ... 4.5<E_v<230 GeV ... PLB **660** 19 (2008)
- MINOS: $(v, \overline{v})^{56}$ Fe) ... 3.5<E_v<45 GeV ... PRD 81, 072002 (2010)

‡

CC Inclusive at SciBooNE

$$\nu_{\mu} N \rightarrow \mu^{-} X$$

- more recently, SciBooNE published 1st measurement of CC inclusive σ on a nuclear target at low energy
- CH, E_v <3 GeV

Nakajima, et al., PRD **83**, 012005 (2011)

‡

SciBooNE Results in Use

• these data are a very useful starting point for model comparisons

wish

- comparisons need to be extended out to higher energies
- ullet need kinematic measurements, e.g. ${
 m d}^2\sigma/{
 m d}{
 m T}_{\mu}{
 m d} heta_{\mu}$ (ala QE)
- need measurements on different nuclei (FSI vs. nucleon correls)

CC Inclusive at T2K

• ND280 off-axis detector began ν data-taking in March 2010 (highlights importance of ND measurements which can weigh-in on these issues!)

- low energy beam
 (very similar E_v range to SB, MB)
- measurements on both C, O
- magnetized, fine-grained tracking detectors

CC Inclusive at T2K

 the first neutrino data from T2K ND has recently come out!

- ingredients for ${
 m d}^2\sigma/{
 m d}{
 m T}_{\mu}{
 m d}{
 m heta}_{\mu}$
- good agreement with NEUT (tuned to prior v data from K2K, SB)

(B. Berger, parallel 2E)

CC Inclusive at MINERVA

• one of 1st goals is to measure CC inclusive σ ratios for various nuclei across very large energy range (will be a real power house!)

- LE mode alone: 409k events CH, 68k Pb, 65k Fe

really nice data, plus
... much more to come!

(R. Ransome, parallel 2E)

Didn't Have Time To Discuss ...

42

- NC elastic scattering ($v_{\mu} N \rightarrow v_{\mu} N$)
 - MiniBooNE, PRD 82, 092005 (2010)

- NC coherent π^0 production ($\nu_{\mu} A \rightarrow \nu_{\mu} A \pi^0$)
 - MiniBooNE, PLB 664, 41 (2008)
 - **NOMAD**, PLB **682**, 177 (2009)
 - SciBooNE, PRD 81, 033004 (2010), 11102 (2010)
 - MINOS, D. Cherdack, NuInt11 workshop
- CC coherent π^+ production ($\nu_{\mu} A \rightarrow \mu^- A \pi^+$)
 - **K2K**, PRL **95**, 252301 (2005)
 - **SciBooNE**, PRD **78**, 112004 (2008)
 - SciBooNE v, H. Tanaka, Nulnt11 workshop

华

Conclusions

• there has been a surge of new results on a variety of different ν interaction channels from multiple exps in an important E region (few-GeV)

(K2K ND, MiniBooNE, MINOS ND, NOMAD, SciBooNE)

- what was supposed to be boiler-plate physics has turned out to be far from that
 - nuclear effects are important!
- * need continued help from theory community to better understand impact of these effects
- * need add'l experimental measurements to provide both confirmation and clarity

(ArgoNeuT, ICARUS, MicroBooNE, MINERvA, NOvA & T2K NDs)

- $d\sigma/dx_{obs}$ in favor of $\sigma(E_v)$
- antineutrinos too!